

NATIONAL LEATHER AND LEATHER PRODUCTS POLICY

- The first stand-alone leather policy, National Leather and Leather Products Policy was spearheaded by NILEST and some MDAs, NGOs, Private and International Organizations.
- The Policy was approved by FEC under the chairmanship of Mr. President, Muhammadu Buhari on 31st October, 2018.
- The Honourable Minister of Science and Technology, Dr. Ogbonaya Onu, on 12th March, 2019, inaugurated the National Steering Committee for the development of the National Leather Policy implementation plan and the coordination of Plan.
- On 6th of July, 2021, the Vice President of Federal Republic of Nigeria, His Excellency, Prof. Yemi Osinbajo, GCON, formally launched the National Leather and Leather Products Policy Implementation Plan.

Table 1: Physicochem	s characterized in table 1. vical Properties of Tannerv Ef	fluent	
Parameters	Effluent	Standard	
BOD (mg/l)	4464	30	
COD (mg/l)	12840	250	
TDS (mg/l)	21300	2100	
TSS (mg/l)	1250	600	
DO (mg/l)	2.72	4.5	
EC (µS/cm)	42500	1200	
pН	8.3	5.5 - 9	
Cl- (mg/l)	13.8	1000	
bb	17.1	5	
Cr (mg/l)	10.348	2	
Zn (mg/l)	1.5241	1	
Ni (mg/l)	0.1513	3	
Na (mg/l)	12006	nm	
Pb (mg/l)	0.1818	0.1	
Fe (mg/l)	14.675	10	
Cu (mg/l)	0.4112	0.1	
Cd (ma/l)	0.0046	2	

- It involves the synthesis of such waste mostly under anaerobic conditions.
- The composition of the bio-gas, is about 70% methane (CH₄) and 29% carbon dioxide (CO₂) with insignificant traces of oxygen (O_2) and hydrogen, carbon monoxide (CO), nitrogen (N_2) and sulphide (H_2S). Methane gas is a good source of energy for combustion both for domestic and industrial heating and electricity generation.
- The energy is sustainable, economic and environmentally friendly compared to energy from fossil fuels.
- Also, the byproduct (digestate) can be used as bio-fertilizers in agriculture.

or anaerobic conditions for microbial/enzymic immobilization engaged in the generation of biogas. The reactor must meet certain operating conditions necessary for optimal performance. Such operating conditions include; temperature, PH, agitation, biochemical kinetics, aeration, concentration of microbes, rheology, form of feeding, carbon/nitrogen ratio, hydraulic retention and mixing ratio amongst others.

